ELEC50001 EE2 Circuits and Systems

Problem Sheet 1 Solutions

(Operation Amplifiers - Lectures 1 - 2)

1. a) This tests your ability to read and interpret datasheets. Extracted from datasheet:

Common Mode Input Impedance Differential Input Impedance		$\begin{gathered} \mathrm{Z}_{\mathrm{CM}} \\ \mathrm{Z}_{\mathrm{DIFF}} \end{gathered}$	-	$\begin{aligned} & 10^{13} \\| 6 \\ & 10^{13} \\| 3 \end{aligned}$		-	$\begin{aligned} & \Omega \\| \mathrm{lpF} \\ & \Omega \\| \mathrm{lpF} \end{aligned}$
DC Open Loop Gain	$A_{\text {oL }}$	95	110				$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} / 2 \text {, }$ $100 \mathrm{mV}<\mathrm{V}_{\text {ouv }}<$ ($\mathrm{V}_{\mathrm{DD}}-100 \mathrm{mV}$)

There is no explicit specification for output resistance. However, one can derive this approximately from the short circuit current.

b) From datasheet:

The specification does not provide comprehensive answer to this question. However, the datasheet information suggest two thing important things:

1) If the output load is high (25k) i.e. output current is low, output range can be $\pm 50 \mathrm{mV}$ from the power supply voltages
2) This output range is dependent on the output current. As RL is reduced to $5 k$, the output range is reduced because the so-call headroom is now increased to $\pm 100 \mathrm{mV}$.
Figure 2-20 of the datasheet provides more detailed specification up to 10 mA output current.
c) From datasheet and Figure 2.1, we see that the Gainbandwidth product is typically 2.8 MHz .

Therefore, if maximum signal frequency is 100 kHz , the maximum gain would theoretically be x28 or lower. This is particularly true because the GBP value of 2.8 MHz is not worst case!

FIGURE 2-1: Open Loop Gain, Phase Margin vs. Frequency
d) This relates to the slew rate limit of the op-amp.

Therefore this typically takes $3.3 / 2.3$ us $=1.4$ us to go from 0 V to 3.3 V or 3.3 V to 0 V . Hence the waveform would look like:

2. The gain of the system from Vin to Vout is:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=1+\frac{R 1}{R s}
$$

However, the circuit is used in a unusual way in that Vin is constant, instead it is the gain itself that is changed by the lorry affecting the feedback resistor value.

Since Vin = 1,

$$
V_{o u t}=1+\frac{R 1}{R_{0}+\alpha W}
$$

Therefore

$$
\frac{d V_{\text {out }}}{d W}=-R 1 \alpha /\left(R_{0}+\alpha W\right)^{2}
$$

3. We normally assume that an op-amp has near infinite input impedance. This question demonstrate what if this assumption does not apply, and the input impedance is in fact R_{p} ?

For $\mathrm{A}_{\mathrm{V}}=\infty, \mathrm{V}+=\mathrm{V}$-. Since X is the virtual earth point $\left(\mathrm{V}_{\mathrm{X}}=0\right)$, no current flows in R_{p}. Vout is therefore not affected by R_{p} at all.

$$
V_{\text {out }}=-R_{f}\left(\frac{V_{1}}{R_{2}}+\frac{V_{2}}{R_{1}}\right) .
$$

For $\mathrm{A}_{\mathrm{v}}<\infty$, we need to include the effects of R_{p} in the calculation.

Apply KCL at V_{x} :

$$
\frac{V_{x}}{R_{p}}=\left(\frac{V_{1}-V_{x}}{R_{2}}+\frac{V_{2}-V_{x}}{R_{1}}+\frac{V_{o u t}-V_{x}}{R_{f}}\right)
$$

We also know that:

$$
V_{\text {out }}=-A_{V} V_{x}
$$

Eliminate V_{x} from the first equation and we have an accurate but rather tedious equation:

$$
V_{\text {out }}=-\left(\frac{V_{1}}{R_{2}}+\frac{V_{2}}{R_{1}}\right)\left[R_{f} \| A_{V}\left(R_{1}\left\|R_{2}\right\| R_{p} \| R_{f}\right)\right]
$$

If $R_{p} \gg$ all other resistances in the equation and Av is large,

$$
\left[R_{f} \| A_{V}\left(R_{1}| | R_{2}\left\|R_{p}\right\| R_{f}\right)\right] \approx R_{f}
$$

and we have the familiar voltage summing equation.
4. Real op-amps have another imperfection known as input offset voltage V_{os}. For example MCP601 has a worst case $V_{0 s}$ of $\pm 3 \mathrm{mV}$ at industrial temperature range.

Use the principle of superposition and consider $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {os }}$ separately with the other voltage source set to 0 , and calculate $V_{\text {out }}$ in turn gives:

Assume $V_{O S}=0$,

$$
V_{o u t 1}=V_{\text {in }}\left(1+\frac{R_{1}}{R_{2}}\right)
$$

Assume $V_{\text {in }}=0$, voltage across R 2 is Vos. Therefore, apply voltage divider principle,

$$
V_{\text {os }}=V_{\text {out } 2}\left(\frac{R_{2}}{R_{1}+R_{2}}\right)
$$

Combine the two gives:

$$
V_{\text {out }}=\left(V_{\text {in }}+V_{\text {oS }}\right)\left(1+\frac{R_{1}}{R_{2}}\right)
$$

5. This question demonstrates how negative feedback reduces the output impedance of the amplifier by trading it off for the open-loop gain. The op-amp has high open-loop gain A_{v}, and yet, we only demand it to give a gain of 1 overall. Negative feedback allows us to trade this for improved effective output impedance. Here is how it works.

The micromodel of the output circuit is simply a voltage source $=A v$ (Vin - Vout) driving a resistor divider with a load R_{L} of 100 ohm and an output resistance Ro of 1 k ohm.

Therefore:

$$
V_{o u t}=A_{v}\left(V_{\text {in }}-V_{\text {out }}\right) \frac{R_{L}}{R_{L}+R_{o}}
$$

Since $(1+x)^{-1}=1-x+x^{2}-x^{3}+x^{4}-\cdots$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{1+\frac{R_{L}+R_{O}}{A_{v} R_{L}}} \approx 1-\frac{R_{O}+R_{L}}{A_{v} R_{L}}=1-\operatorname{error}(\text { for } \mathrm{Av} \gg 1)
$$

Now we know the error, which is the second term here is within 0.5%. Therefore:

$$
\begin{gathered}
\left|\frac{R_{o}+R_{L}}{A_{v} R_{L}}\right|=0.005 \\
A_{v}=\left|\frac{R_{o}+R_{L}}{0.005 R_{L}}\right|=\frac{1000+100}{0.005 * 100}=2200
\end{gathered}
$$

6. Ideal gain $(1+R 1 / R 2)=4$, and $R 1+R 2=20 k$

Hence $R 1=15 k$ and $R 2=5 k$.

Unfortunately the gain is not exactly 4 due to the finite Av. Instead, the gain is:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A_{v}}{1+A_{v} \frac{R_{2}}{R_{2}+R_{1}}}
$$

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A_{v}}{1+A_{v} \frac{R_{2}}{R_{2}+R_{1}}} \\
&=\left(1+\frac{R_{1}}{R_{2}}\right)\left(\frac{1}{1+\left(1+\frac{R_{1}}{R_{2}}\right) \times \frac{1}{A_{v}}}\right) \\
& \approx\left(1+\frac{R_{1}}{R_{2}}\right)\left[1-\left(1+\frac{R_{1}}{R_{2}}\right) \frac{1}{A_{v}}\right]
\end{aligned}
$$

Since we know $\left(1+\frac{R_{1}}{R_{2}}\right)=4$, the nominal gain, and the gain error is 0.2%,

$$
\left(1+\frac{R_{1}}{R_{2}}\right) \frac{1}{A_{v}}=0.002
$$

Hence, $A v=4 / 0.002=2000$.
7. Nominal gain $=R 1 / R 2=-8$, Gain error $= \pm 11 \%$.

R1 and R2 needs to be at least accurate to $\pm 5 \%$. Check: R1 -> +5\%, R2 -> -5%, Absolute gain error $=+10.5 \%$ (from 8). R1 -> -5\%, R2 -> 5\%, -9.5\%.

Assume that $A v$ is high enough for the equation $G=-R 2 / R 1$ applies. Now assume 0.5% is available as gain error due to Av being finite. What is the minimum value of $A v$?

$$
\begin{gathered}
V_{x}=-V_{\text {out }} / A_{V} \\
\frac{V_{\text {in }}-V_{x}}{R_{2}}=\frac{V_{x}-V_{\text {out }}}{R_{1}} \\
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{1}}{R_{2}} \frac{1}{1+\frac{1}{A_{v}}\left(1+\frac{R_{1}}{R_{2}}\right)} \simeq-\frac{R_{1}}{R_{2}}\left[1-\frac{1}{A_{v}}\left(1+\frac{R_{1}}{R_{2}}\right)\right] \\
\mid \text { error }\left|<0.5 \%=\left|\frac{1}{A_{v}}\left(1+\frac{R_{1}}{R_{2}}\right)\right| \simeq \frac{1}{A_{v}}(1+8)\right.
\end{gathered}
$$

$A v>1800$.

